8 research outputs found

    ELECTROPHORETIC DISPLAYS WITH TUNABLE, ANGLE-INDEPENDENT COLOR

    Get PDF
    Electrophoretic displays (EPDs), which exploit the surface charge of microparticles to control their deposition, have become widely available in consumer electronics, such as e-readers and smartwatches. However, a full-color EPD has yet to be demonstrated and commercialized. Here, we demonstrate colloidal assemblies of engineered quasi-amorphous photonic materials, using pigmentary α-Fe2O3/SiO2 core/shell nanoparticles, exhibiting non- iridescent tunable colors which can be tuned electrophoretically. The observed colors result from combination of colloidal particle arrangements, giving rise to structural color, along with the inherent pigmentary color of the α-Fe2O3/SiO2 nanoparticles. Colloidal particle assemblies of α-Fe2O3/SiO2 core/shell nanoparticles, and therefore the resulting colors, can be manipulated by shell thickness, particle concentration and external electrical stimuli. Dynamic tunability of α-Fe2O3/SiO2 nanomaterials in the visible wavelengths is demonstrated using reversible electrophoretic deposition with a noticeable difference between transmitted and reflected colors. The distinct contrast generated can be exploited for tunable display applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-704082

    In-situ USAXS/SAXS Investigation of Tunable Structural Color in Amorphous Photonic Crystals during Electrophoretic Deposition

    Get PDF
    Amorphous photonic crystals (APCs) formed via electrophoretic deposition (EPD) exhibit non-iridescent, angle-independent, structural colors believed to arise from changes in the particle-particle interactions and inter-particle spacing, representing a potential new paradigm for display technologies. However, inter-particle dynamics on nanometer length scales that govern (and enable control over) the displayed color, crystallinity, and other characteristics of the photonic structures, are not well understood. Unfortunately, typical lab-based characterization techniques such as SEM, TEM, and Computed Tomography (CT) are generally performed ex-situ once the sample deposit has been dried. In this work, in-situ USAXS/SAXS/WAXS studies of three-dimensional colloidal particle arrays (of varying particle size and concentration) were performed in order to identify their structural response to applied external electric fields. This data was compared to simultaneously acquired UV-Vis spectra to tie the overall electrically induced structure of the APCs directly to the observed changes in visible color. The structural evolution of the APCs provides new information regarding the correlation between nano-scale particle-particle interactions and the corresponding optical response. To our knowledge, there has been no other prior studies examining the structure of APCs during the application of an electric field. This novel, in-situ USAXS study has helped to gain a better fundamental understanding of how the properties of APCs can be controlled for the advancement of optical displays. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-725437-DRAF

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Electro-Optical Device with Tunable Transparency Using Colloidal Core/Shell Nanoparticles

    No full text
    Suspended particle devices (SPDs) adapted for controlling the transmission of electromagnetic radiation have become an area of considerable focus for smart window technology due to their desirable properties, such as instant and precise light control and cost-effectiveness. Here, we demonstrate a SPD with tunable transparency in the visible regime using colloidal assemblies of nanoparticles. The observed transparency using ZnS/SiO<sub>2</sub> core/shell colloidal nanoparticles is dynamically tunable in response to an external electric field with increased transparency when applied voltage increases. The observed transparency change is attributed to structural ordering of nanoparticle assemblies and thereby modifies the photonic band structures, as confirmed by the finite-difference time-domain simulations of Maxwell’s equations. The transparency of the device can also be manipulated by changing the particle size and the device thickness. In addition to transparency, structural colorations and their dynamic tunability are demonstrated using α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> core/shell nanomaterials, resulting from the combination of inherent optical properties of α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> nanomaterials and coloration due to their tunable structural particle assemblies in response to electric stimuli

    Electro-Optical Device with Tunable Transparency Using Colloidal Core/Shell Nanoparticles

    No full text
    Suspended particle devices (SPDs) adapted for controlling the transmission of electromagnetic radiation have become an area of considerable focus for smart window technology due to their desirable properties, such as instant and precise light control and cost-effectiveness. Here, we demonstrate a SPD with tunable transparency in the visible regime using colloidal assemblies of nanoparticles. The observed transparency using ZnS/SiO<sub>2</sub> core/shell colloidal nanoparticles is dynamically tunable in response to an external electric field with increased transparency when applied voltage increases. The observed transparency change is attributed to structural ordering of nanoparticle assemblies and thereby modifies the photonic band structures, as confirmed by the finite-difference time-domain simulations of Maxwell’s equations. The transparency of the device can also be manipulated by changing the particle size and the device thickness. In addition to transparency, structural colorations and their dynamic tunability are demonstrated using α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> core/shell nanomaterials, resulting from the combination of inherent optical properties of α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> nanomaterials and coloration due to their tunable structural particle assemblies in response to electric stimuli

    Electro-Optical Device with Tunable Transparency Using Colloidal Core/Shell Nanoparticles

    No full text
    Suspended particle devices (SPDs) adapted for controlling the transmission of electromagnetic radiation have become an area of considerable focus for smart window technology due to their desirable properties, such as instant and precise light control and cost-effectiveness. Here, we demonstrate a SPD with tunable transparency in the visible regime using colloidal assemblies of nanoparticles. The observed transparency using ZnS/SiO<sub>2</sub> core/shell colloidal nanoparticles is dynamically tunable in response to an external electric field with increased transparency when applied voltage increases. The observed transparency change is attributed to structural ordering of nanoparticle assemblies and thereby modifies the photonic band structures, as confirmed by the finite-difference time-domain simulations of Maxwell’s equations. The transparency of the device can also be manipulated by changing the particle size and the device thickness. In addition to transparency, structural colorations and their dynamic tunability are demonstrated using α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> core/shell nanomaterials, resulting from the combination of inherent optical properties of α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> nanomaterials and coloration due to their tunable structural particle assemblies in response to electric stimuli

    Ultralight Conductive Silver Nanowire Aerogels

    No full text
    Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm<sup>3</sup> and an electrical conductivity up to 51 000 S/m. Mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa
    corecore